Бетонирование при отрицательных температурах СНИП

Правила и нормы бетонирования при отрицательных температурах

Замораживать ли строительные работы в отрицательную температуру или применять зимний метод бетонирования, давайте разберемся.

Нормальные температурные условия для бетонирования это 5°С — 20°С, но чаще всего температура окружающей среды или выше, что тоже заставляет применять специальный метод бетонирования, или ниже. Наш климат и погодные условия вынудили приспосабливаться под погоду и никак иначе.

С понижением температуры на градуснике, усложняется процесс бетонирования. Этому есть самое простое и логичное объяснение — цемент не может вступить в реакцию со льдом. Поэтому и применяют специальные меры.

!При среднесуточной температуре воздуха ниже 5°С и минимальной суточной температуре ниже 0°С необходимо принимать специальные меры по выдерживанию уложенного бетона (раствора) в конструкциях и сооружениях, бетонируемых на открытом воздухе!

Как только температура окружающей среды опускается ниже 5°С приготовление бетонной смеси на строительной площадке следует производить в обогреваемых бетоносмесительных установках. Вода, которую будут использовать для раствора, должна быть подогретой, чтобы бетонная смесь получилась с температурой не ниже требуемой по расчету. А также, если раствор транспортируется на строительный объект, способы транспортировки должны обязательно обеспечивать предотвращение снижения температуры раствора.

!При этом продолжительность перемешивания бетонной смеси должна быть увеличена не менее чем на 25 % по сравнению с летними условиями!

Основание, на которое должна укладываться бетонная смесь, и его температура должны исключать возможность замерзания бетонной смеси в точке контакта. При выдерживании бетона в конструкции методом термоса, при предварительном разогреве бетонной смеси, а также при применении бетона с противоморозными добавками допускается укладывать смесь на неотогретое непучинистое основание или старый бетон, если по расчету в зоне контакта на протяжении расчетного периода выдерживания бетона не произойдет его замерзания.

При бетонировании густоармированных конструкций с арматурой диаметром больше 24 мм, арматурой из жестких прокатных профилей или с крупными металлическими закладными частями следует выполнять с предварительным отогревом металла до положительной температуры или местным вибрированием смеси в приарматурной и опалубочной зонах.

!При этом продолжительность перемешивания бетонной смеси должна быть увеличена не менее чем на 25 % по сравнению с летними условиями!

Основание, на которое должна укладываться бетонная смесь, и его температура должны исключать возможность замерзания бетонной смеси в точке контакта. При выдерживании бетона в конструкции методом термоса, при предварительном разогреве бетонной смеси, а также при применении бетона с противоморозными добавками допускается укладывать смесь на неотогретое непучинистое основание или старый бетон, если по расчету в зоне контакта на протяжении расчетного периода выдерживания бетона не произойдет его замерзания.

Неопалубленные поверхности конструкций следует укрывать паро и теплоизоляционными материалами непосредственно по окончании бетонирования. Выпуски арматуры забетонированных конструкций должны быть укрыты или утеплены на высоту (длину) не менее чем 0,5 м.

До укладки бетонной смеси полости после установки арматуры и опалубки должны быть закрыты брезентом или каким-либо другим материалом от попадания в них снега, дождя и посторонних предметов.

  • способом термоса;
  • с применением противоморозных добавок;
  • с электротермообработкой бетона;
  • с обогревом бетона горячим воздухом, в тепляках.

Способ термоса следует применять при обеспечении начальной температуры уложенного бетона в интервале от 5 до 10°С и последующем сохранении средней температуры бетона в этом интервале в течение 5-7 сут.

Контактный обогрев уложенного бетона в термоактивной опалубке следует применять при бетонировании конструкций с модулем поверхности 6 и более. После уплотнения открытые поверхности бетона и прилегающие участки щитов термоактивной опалубки должны быть надежно защищены от потерь бетоном влаги и тепла.

Электродный прогрев бетона необходимо производить в соответствии с технологическими картами. Запрещается использовать в качестве электродов арматуру бетонируемой конструкции. Электродный прогрев следует производить до приобретения бетоном не более 50 % расчетной прочности. Если требуемая прочность бетона превышает эту величину, то дальнейшее выдерживание бетона следует обеспечивать методом термоса.

Применение бетона с противоморозными добавками запрещается в конструкциях:

  •  железобетонных предварительно напряженных;
  • железобетонных, расположенных в зоне действия блуждающих токов или находящихся ближе 100 м от источников постоянного тока высокого напряжения;
  • железобетонных, предназначенных для эксплуатации в агрессивной среде; в частях конструкций, находящихся в зоне переменного уровня воды.

Источник: https://dako-group.com.ua/pravila-i-normy-betonirovanija-pri-otricatelnyh-temperaturah/

Бетонирование зимой: способы, особенности, необходимые мероприятия

При необходимости проведения зимнего бетонирования главной проблемой являются низкие температуры окружающей среды, которые приводят к замерзанию строительных материалов. Соответственно, технология бетонирования в зимних условиях направлена на предотвращение замерзания воды и других материалов.

Требования к зимнему бетонированию определяются СНиП 3.03.01, согласно которому зимними условиями считаются температуры ниже 5°С.

Особенности зимнего бетонирования

Существуют две важные причины, усложняющие процесс укладки бетона в зимой.

  • При низких температурах замедляется процесс гидратации цемента, что является причиной увеличения сроков набора твердости бетоном.

При температуре окружающей среды, равной 200С, в течение недели бетон набирает около 70% проектной прочности. При понижении температуры до 50С для набора такого уровня прочности потребуется времени в 3-4 раза больше.

  • Еще одним нежелательным процессом является развитие сил внутреннего давления, которые возникают из-за расширения замерзшей воды. Это явление приводит к разупрочнению бетона. Помимо этого, из замерзшей воды вокруг заполнителей образуются ледяные пленки, нарушающие связь между компонентами смеси.
Читайте также  Как правильно мешать бетон в бетономешалке?

При замерзании воды в порах твердеющей смеси развивается значительное давление, которое приводит к разрушению структуры неокрепшего бетона и снижению его прочностных характеристик.

Снижение прочности тем значительнее, чем в более раннем возрасте бетона замерзла вода. Наиболее опасным является период схватывания бетонной смеси. Если смесь замерзнет сразу после укладки ее в опалубку, то ее прочность при отрицательных температурах будет обусловлена только силами замерзания. При повышении температуры процесс гидратации цемента возобновится, но прочность такого бетона будет значительно уступать аналогичной характеристике материала, который не подвергался замораживанию.

Противостоять замораживанию без структурных разрушений может только тот бетон, который уже набрал определенное значение прочности. Важно соблюдать правило беспрерывной укладки бетона во избежание холодных швов.

В современном строительстве в мировой практике наиболее распространен способ зимнего бетонирования, когда бетонная смесь предохраняется от замерзания во время ее схватывания и набора определенной величины прочности, которая называется критической.

Под критической величиной прочности бетона принимают прочность, которая равна 50% от марочной. В конструкциях ответственного назначения бетон предохраняется от замерзания до достижения 70% от проектной прочности.

В современном строительстве применяют несколько способов бетонирования в зимний период:

  • использование добавок противоморозного действия;
  • укрытие бетонной смеси пленкой ПХВ и другими утеплителями;
  • электрический и инфракрасный прогрев бетона.

Применение добавок противоморозного действия

Технологически наиболее удобным и экономически выгодным методом проведения зимнего бетонирования является применение противоморозных добавок. Этот безобогревный способ гораздо дешевле бетонирования с предварительным ограждением и утеплением конструкции, прогрева электричеством и инфракрасными лучами.

Модификаторы противоморозного действия могут использоваться как самостоятельно, так и в сочетании с различными методами подогрева.

Все существующие «зимние» добавки в бетон можно разделить на три основные группы.

  • К первой группе относят добавки, которые либо слабо ускоряют, либо слабо замедляют процессы схватывания и твердения смеси. Представители этого класса — сильные и слабые электролиты, неэлектролиты и составы органического происхождения — карбамид и многоатомные спирты.
  • Ко второй группе принадлежат модификаторы на основе хлорида кальция. Эти вещества имеют способность сильно ускорять процессы схватывания и твердения и обладают значительными антифризными свойствами.
  • В третью группу входят вещества, обладающие слабыми антифризными свойствами, но являющиеся сильными ускорителями схватывания и твердения с сильным тепловыделением сразу после заливки. Сфера применения этих добавок невелика, но они представляют интерес с научной точки зрения. К таким добавкам относятся трехвалентные сульфаты на основе алюминия и железа.

Мероприятия, увеличивающие эффективность применения противоморозных добавок

Противоморозные добавки выполняют важную роль — активируют процессы твердения смеси и снижают температуру замерзания жидкой фазы. Но для получения эффективного результата, наряду с использованием модификаторов, необходимо выполнять ряд сопутствующих мероприятий.

  • Созданию внутренней теплоты в бетонной смеси способствует предварительный подогрев ее компонентов.
  • После окончания укладки поверхность бетона необходимо утеплить матами, что позволит сохранить тепло, выделенное в результате экзотермической реакции цемента и воды, и сохранить условия, подходящие для твердения.
  • Зимой наиболее эффективно использовать портландцементы и высокомарочные быстротвердеющие цементы.

При зимнем бетонировании не рекомендуется использовать замерзшие заполнители.

  • При изготовлении бетонной смеси из подогретых компонентов применяют иной порядок загрузки всех элементов, чем в традиционных летних условиях, когда все сухие составляющие одновременно загружаются в заполненный водой барабан смесителя. Зимой, чтобы избежать заваривания цемента, сначала в барабан заливают воду, затем засыпают крупный заполнитель, а потом проворачивают барабан несколько оборотов и засыпают песок и цемент.

Продолжительность перемешивания компонентов в зимнее время должна быть увеличена примерно в полтора раза.

  • Транспортировка смеси должна осуществляться в утепленной машине, с двойным днищем, куда поступают отработанные газы. Места погрузки и выгрузки бетонной смеси необходимо изолировать от воздействия ветра, а средства подачи смеси — тщательно утеплить.
  • Опалубка и арматура должны быть очищены от снега и наледи, арматуру необходимо отогреть до положительной температуры.
  • Обязательное условие зимнего бетонирования — быстрые темпы его проведения.

Метод «термоса»

Технологически метод «термоса» осуществляется укладкой смеси положительной температуры в утепленную опалубку. Бетон набирает прочность благодаря начальному теплосодержанию и экзотермическому выделению при реакции гидратации цемента.

Максимальное тепловыделение обеспечивают портландцементы и высокомарочные цементы. Особо эффективен метод «термоса» в сочетании с противоморозными добавками.

Бетонирование методом «горячего термоса» заключается в кратковременном подогреве смеси до 60-800С, уплотнении ее в горячем состоянии и выдерживании в «термосе» или с применением дополнительного подогрева.

В условиях строительной площадки бетонную смесь разогревают с помощью электродов. Смесь выступает в цепи переменного электротока в роли сопротивления. Электропрогрев проводят в кузовах автосамосвалов или бадьях.

Способы искусственного нагрева и прогрева бетона

Сущность этого метода заключается в создании и дальнейшем поддержании температуры смеси при максимально допустимой величине, пока бетон не наберет требуемую прочность. Этот способ применяется в случаях, когда метода «термоса» оказывается недостаточно.

Существует несколько вариантов достижения требуемого результата:

  • Физический смысл электродного прогрева аналогичен выше описанному методу электродного разогрева смеси. В данном случае используется теплота, которая выделяется смесью при пропускании через нее электрического тока. Для подведения электротока к бетону применяют электроды нескольких типов: пластинчатые, струнные, полосовые, стержневые. Наиболее эффективными являются пластинчатые электроды, изготавливаемые из кровельной стали. Пластины нашивают на поверхность опалубки, непосредственно соприкасающуюся с бетоном, и подключают к разноименным фазам сети. Между противолежащими электродами происходит токообмен, в результате чего осуществляется нагрев всей бетонной конструкции.
  • Сущность контактного или кондуктивного нагрева заключается в использовании тепла, выделяемого в проводнике во время прохождения по нему электротока. Контактным способом теплота передается всем поверхностям бетонного элемента. От поверхностей тепло распространяется по всей конструкции.
Читайте также  Направляющие для заливки бетонного пола

Для контактного нагрева бетона используют термоактивные гибкие покрытия или термоактивные опалубки.

  • Способ инфракрасного нагрева основан на способности инфракрасных лучей при их поглощении телом трансформироваться в тепловую энергию. Теплота от излучателя к нагреваемому телу осуществляется моментально без использования переносчика тепла. В качестве генераторов инфракрасных волн используют кварцевые и трубчатые металлические излучатели. Инфракрасный нагрев применяется для отогрева арматуры, промороженных бетонных поверхностей, тепловой защиты уложенной бетонной смеси.
  • При индукционном нагреве используется теплота, которая выделяется в стальной опалубке или арматурных деталях и изделиях, расположенных в электромагнитном поле катушки-индуктора. Этот метод применяется с целью отогрева ранее выполненных бетонных конструкций при любой температуре окружающей среды и в любой опалубке.

Соблюдение рекомендаций по зимнему бетонированию позволит избежать утраты прочностных характеристик бетонных и железобетонных конструкций, выполненных при пониженных температурах наружного воздуха.

Бетонирование зимой: способы, особенности, необходимые мероприятия, 4.7 из 5 — всего : 37

Источник: https://www.navigator-beton.ru/articles/betonirovanie-zimoj-sposoby-osobennosti-neobhodimye-meropriyatiya.html

Тр 80-98 технические рекомендации по технологии бетонирования безобогревным способом монолитных конструкций с применением термоса и ускоренного термоса — скачать бесплатно

ПРАВИТЕЛЬСТВО МОСКВЫ

КОМПЛЕКС ПЕРСПЕКТИВНОГО РАЗВИТИЯ ГОРОДА

ТЕХНИЧЕСКИЕ РЕКОМЕНДАЦИИ
ПО ТЕХНОЛОГИИ БЕТОНИРОВАНИЯ
БЕЗОБОГРЕВНЫМ СПОСОБОМ МОНОЛИТНЫХ
КОНСТРУКЦИЙ С ПРИМЕНЕНИЕМ ТЕРМОСА
И УСКОРЕННОГО ТЕРМОСА

ТР 80-98

МОСКВА — 1998

Рекомендации по технологии бетонирования безобогревным способом монолитных конструкций с применением термоса и ускоренного термоса разработаны лабораторией сборного домостроения НИИМосстроя (к.т.н. Ф.С. Белавин, научные сотрудники З.И. Глухова и И.Р. Младова) при участии Мосстройлицензии (Ю.П. Емельянов).

Метод термоса основан на использовании тепла, вводимого в бетон путем прогрева материалов или бетонной смеси до ее укладки в опалубку, и экзотермического тепла, выделяемого цементом в процессе твердения бетона.

Ускоренный термос — это условное название технологии бетонирования монолитных конструкций без предварительного прогрева исходных материалов или бетонной смеси за счет введения в нее противоморозных добавок, что позволяет: снизить критическую прочность бетона в конструкциях с ненапрягаемой арматурой; сократить время выдерживания конструкций до снятия ненесущей опалубки и утеплителя; бетонировать конструкции при более низких отрицательных температурах наружного воздуха. Ускоренный термос — это технологически простой, удобный и экономически выгодный способ зимнего бетонирования.

Рекомендации разработаны с учетом требований СНиП 3.03.01-87 «Несущие и ограждающие конструкции», а также с использованием материалов по методам зимнего бетонирования, опубликованных после 1975 года.

Рекомендации согласованы с Управлением развития Генплана, АОХК «Главмосстрой», НИИЖБом Госстроя РФ, ГП «Мосгосэкспертиза».

Правительство Москвы

Технические рекомендации
по технологии бетонирования безобогревным способом монолитных конструкций с применением термоса и ускоренного термоса

ТР 80-98

Комплекс перспективного развития города

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие рекомендации распространяются на производство бетонных и железобетонных работ в зимнее время с применением термоса и ускоренного термоса при строительстве на территории Москвы и Московской области.

1.2. Замораживание бетона в раннем возрасте отрицательно влияет на его свойства после оттаивания при последующем твердении вследствие необратимого разрушающего воздействия мороза на структуру бетона. Поэтому в соответствии с требованиями главы СНиП 3.03.01-87 «Несущие и ограждающие конструкции» не допускается замерзание бетона в конструкциях до достижения им критической* прочности, которая должна составлять от проектной:

а) для бетонных и железобетонных конструкций с ненапрягаемой арматурой:

для бетонов классов: В15 (М200) и ниже                               — 50 %

В22,5 — В25 (М300 — М350)                  — 40 %;

В30 (М400) и выше                              — 30 %;

б) для конструкций с предварительно напрягаемой арматурой — 80 %.

* Критической называется прочность бетона, в % от марочной, после достижения которой бетон может быть заморожен без снижения прочности и других показателей в процессе последующего твердения после оттаивания.

Разработаны НИИМосстроем

Внесены:

Управлением развития Генплана

Утверждены:

Первый заместитель руководителя Комплекса перспективного развития города

___________ Е.П. Заикин

«25» декабря 1998 г.

Дата введения в действие

«1» января 1999 г.

1.3. Для достижения бетоном прочности, требуемой проектом при твердении в зимних условиях без искусственного обогрева, технологически наиболее простым и экономичным является метод термоса, основанный на принципе использования тепла, введенного в бетон путем прогрева материалов или бетонной смеси до укладки ее в опалубку, и экзотермического тепла, выделяемого цементом в процессе твердения бетона.

Общий запас тепла должен соответствовать его потерям при остывании конструкции (при соответствующем утеплении) до набора бетоном заделанной прочности (критической или распалубочной).

1.4. Ускоренный термос расширяет область применения термоса за счет введения в бетон противоморозных добавок, которые обеспечивают твердение бетона при отрицательных температурах без предварительного прогрева исходных материалов и бетонной смеси. Такой бетон, набрав на морозе критическую прочность, после оттаивания и 28-суточного твердения при температуре выше 0 °С приобретает прочность не менее 100 % от R 28 .

1.5. С целью сокращения сроков твердения бетона ускоренный термос может применяться в сочетании с методами электрообогрева или электропрогрева бетона.

1.6. Ускоренный термос, как и обычный термос, применяют при производстве бетонных и железобетонных работ в зимних условиях при среднесуточной температуре наружного воздуха +5 °С и минимальной ниже 0 °С.

Наиболее экономичные методы выдерживания бетона монолитных конструкций при зимнем бетонировании приведены в табл. 1.

Противоморозные добавки при бетонировании ускоренным термосом следует, как правило, применять в комплексе с пластифицирующими.

1.7. Ускоренный термос позволяет снизить критическую прочность бетона в железобетонных конструкциях с ненапрягаемой арматурой, которая должна составлять от проектной:

для бетонов классов: В15 (М200) и ниже — 30 %;

В22,5 — В25 (М300 — М350) — 25 %;

Читайте также  Деревянные перекрытия в доме из керамзитобетонных блоков

В30 (М400) и выше — 20 %.

Таблица 1

Выбор наиболее экономичного метода выдерживания бетона при зимнем бетонировании монолитных конструкций

Вид конструкции

Минимальная температура воздуха, ° С, до

Способ бетонирования

Массивные бетонные и железобетонные фундаменты, блоки и плиты с Мп* £ 3

-15

термос

-20

ускоренный термос

Фундаменты под конструкции зданий и оборудование, массивные стены и т.п. с Мп = 3 — 6

-15

термос, ускоренный термос

Колонны, балки, прогоны, элементы рамных конструкций, свайные ростверки, стены, перекрытия с Мп = 6 — 10

-15

ускоренный термос, ускоренный термос с электропрогревом или электрообогревом

* Мп — отношение суммы площадей охлаждаемых поверхностей конструкций в м2 к ее объему в м3.  (м-1).

1.8. При применении ускоренного термоса утепление и ненесущая опалубка могут быть сняты на несколько дней раньше, чем при выдерживании бетона по методу термоса, что видно из рис. 1 (а, б).

Несущая опалубка может быть снята при прочности бетона не менее указанной в табл. 2.

Таблица 2

Требуемая прочность бетона при распалубке

Строительные конструкции

Фактическая нагрузка, % от нормативной

свыше 70

70 и менее

прочность бетона, % от проектной

1. Конструкции с напрягаемой арматурой

100

80

2. Колонны, несущие конструкции (балки, ригели, плиты) пролетом 6 м и более

100

80

3. Несущие конструкции пролетом до 6 м, плиты пролетом до 3 м

100

70

Примечания: 1. Загружение распалубленной конструкции полной расчетной нагрузкой допускается после приобретения бетоном проектной прочности.

2. Боковая несущая опалубка может сниматься после достижения бетоном прочности не менее критической, но не ранее момента, определяемого в соответствии с требованиями, изложенными в п. 1.12 .

Рис. 1. Время и условия выдерживания бетона марки 200 — 300 на портландцементе марки 400 до снятия ненесущей (боковой) (а) и несущей (б) опалубки:

Поу — продолжительность выдерживания в опалубке с утеплителем;

По — в опалубке без утеплителя;

П’оу — в опалубке с утеплителем методом термоса.

1.9. Назначение теплоизоляции, условий распалубки конструкций, а также вида и количества вводимой в бетон противоморозной добавки производится исходя из расчетных величин температуры и скорости ветра, приведенных в табл. 3, для зимнего периода в соответствии с требованиями для Москвы главы СНиП 2.01.01-82 «Строительная климатология и геофизика».

Таблица 3

Расчетные величины температуры наружного воздуха и скорость ветра в Москве

Месяцы

IX

X

XI

XII

I

II

III

IV

V

Скорость ветра, м/с

° С

-8

-19,1

-20,4

-19,1

-13,2

-4,5

4,9

1.10. Конструкция опалубки и слой утеплителя должны включать непродуваемые прослойки (толь, пленочные материалы и т.д.). Рекомендуемые конструкции опалубки и коэффициенты теплопередачи опалубок различных конструкций приведены в табл. 16 (приложение 1).

1.11. Температурный режим бетона в конструкции оценивается по контрольной точке, расположенной на глубине 50 мм в середине поверхности бетона в расчетном сечении.

За расчетное сечение на плане конструкции принимается среднее сечение по отношению к наибольшему размеру бетонируемой конструкции.

1.12. При решении вопроса о сроках снятия опалубки или тепловой защиты бетонируемых конструкций необходимо руководствоваться следующим:

а) нельзя допускать распалубку или снятие тепловой изоляции с конструкции, если температура бетона в ее центре продолжает повышаться;

б) снятие опалубки или тепловой защиты конструкции разрешается не ранее достижения бетоном требуемой прочности (см. п.п. 1.2, 1.7, 1.8);

в) опалубка или тепловая изоляция конструкции может быть удалена не ранее момента, когда разность температур между бетоном в контрольной точке и наружным воздухом достигает допустимых пределов: D t = 20 °С для конструкций с Мп = 2 — 5 и D t = 30 ° C для конструкций с Мп ³ 5;

г) примерзание опалубки к бетону не допускается. Снятие ее должно быть осуществлено не позднее достижения температуры +5 °С в контрольной точке конструкции.

2. ТРЕБОВАНИЯ К МАТЕРИАЛАМ И ОСОБЕННОСТИ ПОДБОРА СОСТАВА БЕТОНА

2.1. Для приготовления бетонных смесей, выдерживаемых по методам термоса и ускоренного термоса, рекомендуется применять быстротвердеющий и обычный портландцемент и шлакопортландцемент марки М400 и выше, удовлетворяющие требованиям ГОСТ 10178-85* «Портландцемент, шлакопортландцемент, пуццолановый портландцемент и их разновидности».

2.2. При изготовлении бетонной смеси с противоморозными добавками не допускается применение глиноземистого и пуццоланового цементов.

2.3. При использовании в качестве противоморозной добавки нитрита натрия содержание в клинкере трехкальциевого алюмината (С3А) должно быть не более 7 %, а при использовании нитродапа — не более 8 %.

2.4. При предъявлении к бетону с нитродапом требований по морозостойкости марки 100 и более следует применять портландцементы с содержанием С3А до 6 %, если в проекте нет особых указаний по виду цемента.

2.5. Заполнители для тяжелых и легких бетонов должны удовлетворять требованиям ГОСТ 8267-93 «Щебень и гравий из плотных горных пород для строительных работ. Технические требования» и ГОСТ 9757-90 «Заполнители пористые неорганические для легких бетонов. Классификация».

2.6. Заполнители, предназначенные для приготовления бетонов с добавками нитрита натрия и нитродапа, не должны содержать включений реакционноспособного кремнезема (опал, халцедон и др.), взаимодействие которого с едким натром, образующимся при твердении бетона, может привести к коррозии бетона.

2.7. При приготовлении бетонной смеси на неотогретых заполнителях не допускаются включения в них льда, снега, смерзшихся комьев и наледи.

2.8. Вода для затворения бетонной смеси должна применяться обычная водопроводная, удовлетворяющая требованиям ГОСТ 23732-79.

2.9. В качестве противоморозных добавок рекомендуется применять:

нитрит натрия в водном растворе по ТУ 38-10274-85;

нитрит натрия кристаллический технический (натрий азотистокислый) по ГОСТ 19906-74*;

неслеживающийся нитрит натрия по ТУ 113-05-100-14-91;

нитрат натрия технический по ГОСТ 828-77*Е;

Источник: http://www.gosthelp.ru/text/TR8098Texnicheskierekomen.html

Для любых предложений по сайту: [email protected]